SCI SCIE
FINITE FIELDS AND THEIR APPLICATIONS 期刊简介
英文简介:

Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm. Finite Fields and Their Applications is published four times per year and maintains very strict refereeing standards, accepting only those papers which receive excellent referee reports. This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license.

中文简介:(来自Google、百度翻译)

有限领域及其应用是一种同行评审的技术期刊,在有限领域理论和应用领域发表论文。由于在广泛领域的应用,有限领域在数学的几个领域越来越重要,包括线性和抽象代数、数论和代数几何,以及计算机科学、统计学、信息论和工程学。 对于内聚性来说,由于如此多的应用依赖于有限域的各种理论性质,因此有一个关于理论方面的高质量论文的核心是至关重要的。此外,由于该领域的大部分活力来自计算问题,该杂志发表了关于有限域计算方面的论文,以及关于有限域相关方法的算法和复杂性的论文。 该杂志还发表各种应用论文,包括但不限于代数编码理论、密码学、组合设计理论、伪随机数生成和线性循环序列。还需要包括其他应用领域,但重要的是有限域在理论、应用或算法中扮演着重要的角色。 有限的领域和他们的申请每年出版四次,并保持非常严格的评审标准,只接受那些收到优秀的裁判报告的论文。 这本杂志有一个开放的档案。所有已发表的项目,包括研究论文,都可以无限制地访问,并在发表48个月后永久免费阅读和下载。存档中的所有论文均受爱思唯尔用户许可的约束。

期刊ISSN
1071-5797
最新的影响因子
1
最新CiteScore值
1.21
最新自引率
37.60%
期刊官方网址
http://www.journals.elsevier.com/finite-fields-and-their-applications/
期刊投稿网址
http://ees.elsevier.com/ffa/default.asp?acw=3
通讯地址
ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, USA, CA, 92101-4495
偏重的研究方向(学科)
数学-数学
出版周期
Quarterly
平均审稿速度
较慢,6-12周
出版年份
0
出版国家/地区
UNITED STATES
是否OA
No
SCI期刊coverage
Science Citation Index Expanded(科学引文索引扩展)
NCBI查询
PubMed Central (PMC)链接 全文检索(pubmed central)
FINITE FIELDS AND THEIR APPLICATIONS 期刊中科院JCR 评价数据
最新中科院JCR分区
大类(学科)
小类(学科)
JCR学科排名
数学
MATHEMATICS(数学) 1区 MATHEMATICS, APPLIED(数学,应用) 2区
57/310 105/252
最新的影响因子
1
最新公布的期刊年发文量
年度总发文量 年度论文发表量 年度综述发表量
108 108 0
总被引频次 1189
特征因子 0.004780
影响因子趋势图
2007年以来影响因子趋势图(整体平稳趋势)
FINITE FIELDS AND THEIR APPLICATIONS 期刊CiteScore评价数据
最新CiteScore值
1.21
=
引文计数(2018) 文献(2015-2017)
=
340次引用 280篇文献
文献总数(2014-2016) 280
被引用比率
50%
SJR
0.894
SNIP
1.477
CiteScore排名
序号 类别(学科) 排名 百分位
1 Mathematics Theoretical Computer Science #
CiteScore趋势图
CiteScore趋势图
scopus涵盖范围
scopus趋势图
FINITE FIELDS AND THEIR APPLICATIONS 投稿经验(由下方点评分析获得,0人参与,187人阅读)
偏重的研究方向:
  • 暂无
投稿录用比例: 暂无
审稿速度: 暂无
分享者 点评内容
没有更多了~
基础信息
中科院JCR评价数据
CiteScore评测数据
相关期刊
期刊点评
爱学术网-期刊论文服务平台 2014-2022 爱学术网版权所有
Copyright © 2014-2022 爱学术网 All Rights Reserved. 备案号:苏ICP备2020050931号 版权所有:南京传视绛文信息科技有限公司